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Abstract

Research concerning organization and coordina-
tion within multi-agent systems continues to draw
from a variety of architectures and methodologies.
The work presented in this paper combines techniques
from game theory and multi-agent systems to produce
self-organizing, polymorphic, lightweight, embedded
agents for systems scheduling within a large-scale
real-time systems environment. Results show how this
approach is used to experimentally produce optimum
real-time scheduling through the emergent behavior
of thousands of agents. These results are obtained us-
ing a SWARM simulation of systems scheduling within
a High Energy Physics experiment consisting of 2500
digital signal processors.

1. Introduction
Game theory has been used in a wide range of

problems requiring coordination in large-scale com-
plex systems [2][3][5][11]. This paper describes a
hybrid-intelligent, self-organizing, multi-agent sys-
tems approach to computer systems scheduling based
on game theory. The design is implemented on
RTES/BTeV, a large-scale, real-time data acquisition
system for a High Energy Physics (HEP) particle ac-
celerator.

Multiple layers of very lightweight agents (VLAs)
are embedded within 2500 Digital Signal Processors
(DSPs) to handle fault mitigation across the system.
One of the primary challenges is to determine the fre-
quency at which VLAs should perform specific mon-
itoring and mitigation tasks. Results show how self-
organizing VLAs within individual systems sched-
ulers are used to experimentally find the optimum rate
at which these fault mitigation and monitoring tasks
should occur. SWARM multi-agent simulation soft-
ware is used to model the RTES/BTeV environment.

The paper is divided into four sections. First, some
background on the BTeV experiment and the RTES
collaboration is provided, along with some details on
VLAs embedded within Level 1 of the RTES/BTeV
environment. Current challenges and other motivat-
ing factors are also described. The next section details
the model for self-organizing VLAs within systems
schedulers implemented on each of the 2500 DSPs.
This consists of a model overview and specifics on the

self-organizing approach based on cooperative game
theory. The next section evaluates the results of a
SWARM simulation of the RTES/BTeV environment
that implements the self-organizing approach. Finally,
next steps are outlined, followed by a conclusion.

2. Background and Motivation

2.1 RTES/BTeV

BTeV is a proposed particle accelerator-based
HEP experiment currently under development at
Fermi National Accelerator Laboratory. The goal is
to study charge-parity violation, mixing, and rare de-
cays of particles known as beauty and charm hadrons,
in order to learn more about matter-antimatter asym-
metries that exist in the universe today [7].

The experiment uses approximately 30 planar sil-
icon pixel detectors that are connected to specialized
field-programmable gate arrays (FPGAs). The FPGAs
are connected to approximately 2500 digital signal
processors (DSPs) that filter incoming data at the ex-
tremely high rate of approximately 1.5 Terabytes per
second from a total of 20x106 data channels. A three
tier hierarchical trigger architecture will be used to
handle this high rate [7]. An overview of the BTeV
triggering and data acquisition system is shown in
Figure 1, including a magnified view of the L1 Vertex
Trigger responsible for Level 1 filtering consisting of
2500 Worker nodes (2000 Track Farms and 500 Ver-
tex Farms).

There are many Worker level tasks that the Farm-
let VLA (FVLA) is responsible for monitoring. A list
of some of the tasks is shown in Figure 2. A traditional
hierarchical approach would assign one (or more) dis-
tinct DSPs the role of the FVLA, with the responsibil-
ity of monitoring the state of other Worker DSPs on
the node. However, this leaves the system with only
very few possible points of failure before critical tasks
are left unattended.

Another approach would be to assign a single DSP
(or more) to each and every Worker DSP, to act as the
FVLA. However, since 2500 Worker DSPs are pro-
jected, this would prove very expensive and may still
not fully protect all DSPs given even a low number of
system failures. The events that pass the full set of
physics algorithm filters occur very infrequently, and



Figure 1. The BTeV triggering and data acquisition system showing (left side) detector, buffer memories, L1, L2,
L3 clusters and their interconnects and (right side) a magnified figure of the L1 Vertex trigger.

the cost of operating this environment is high. The ex-
tremely large streams of data resulting from the BTeV
environment must be processed real-time with highly
resilient adaptive fault tolerant systems.

2.2. Very Lightweight Agents (VLAs)

Multiple levels of very lightweight agents (VLAs)
[10] are one of the primary components responsible
for fault mitigation across the BTeV data acquisition
system.

The primary objective of the VLA is to provide the
BTeV environment with a lightweight, adaptive layer
of fault mitigation. One of the latest phases of work at
Syracuse University has involved implementing em-
bedded proactive and reactive rules to handle specific
system failure scenarios.

A scaled prototype of the Level 1 RTES/BTeV
environment was presented at the SuperComputing
2003 (SC2003) conference [9]. Reactive and proac-
tive VLA rules were integrated within this Level 1
prototype and served a primary role in demonstrating
the embedded fault tolerant capabilities of the system.

2.3. Challenges

While the SC2003 prototype was effective for
demonstrating the real-time fault mitigation capabil-
ities of VLAs on limited hardware utilizing 16 DSPs,

one of the major challenges is to find out how the be-
havior of the various levels of VLAs will scale when
implemented across the 2500 DSPs projected for
BTeV [6]. In particular, how frequently should these
monitoring tasks be performed to optimize available
processing time, and what affect does this have on
other components and the overall behavior of a large-
scale real-time embedded system such as BTeV.

Given the number of components and countless
fault scenarios involved, it is infeasible to design an
‘expert system’ that applies mitigative actions trig-
gered from a central processing unit acting on rules
capturing every possible system state. Instead, the
next section describes a distributed approach that
uses self-organizing lightweight agents to accom-
plish fault mitigation within the large-scale real-time
RTES/BTeV environement.

2.4. SWARM

SWARM (http://www.swarm.org), distributed un-
der the GNU General Public License, is software
available as a Java or Objective-C development kit
that allows for multi-agent simulation of complex sys-
tems [1][4]. It consists of a set of libraries that facili-
tate implementation of agent-based models. SWARM
has previously been used by the RTES team in simu-



ID Description Possible Causes
e1 DSP over time budget on crossing processing. Crossing was too complex to complete and developer

was not careful to give up in time.
e2 PA is stuck in a loop (within software timer control). Improper error handling caused the program to get stuck

in an infinite loop.
e3 DSP application framework is stuck in a loop (outside of

software timer control).
Logic error in code that manipulates the board’s commu-
nication facilities.

e4 DSP application branches to an illegal instruction. Logic error any place in the code that causes corruption
of memory.

e5 Processing times per crossing are too long. SAF reported crossing processing times are consistently
falling out of range.

e6 Too many track segments. Not necessarily a fault at the
source.

The front-end hardware is malfunctioning; more parti-
cles collided than can be managed; bug in the upstream
algorithms.

e7 Corrupt data in a crossing (truncated, misaligned, or bad
header).

Bad checksum or incorrect header data in a crossing due
to transmission failure or upstream logic error.

e8 Corrupt data - no such channels in the detector. Logic error in the front-end electronics or firmware (byte
swapping).

e9 Crossing data lost. DSP was reset or reboot while an event was being
processed; FPGA input queue overflow; FPGA output
queue overflow.

e10 Failed to transfer results down the DSP L1 buffer link
(buffer ready flag not set in time).

The level-1 buffers were not ready to receive data; the
farmlet output queues overflowed.

Figure 2. Sample fault scenarios that FVLA is responsible for monitoring.

lations that model the RTES/BTeV environment [8].

3. Self-Organizing VLAs for Real-Time
Scheduling

3.1. Overview

This paper evaluates aself-organizingapproach
that addresses the weaknesses inherent in traditional
hierarchical designs. In this model, rather than hard-
wiring the assignment of FVLA role(s) to specific
unique DSPs, the DSPs arepolymorphicin thatevery
Worker DSP is equipped to play the role of the FVLA
for anyDSP on the same node.

The emergent behavior of this design results in
self-organization of FVLA responsibilities based on
the state and workload of all DSPs within the node
at any given point in time. A certain set of DSPs
may play the role of FVLA at one moment, and an-
other set (which may or may not include DSPs from
the original set) can be found playing this role later
in time. The organization occurs automatically within
the system as performance metrics across DSPs fluc-
tuate. This eliminates both the financial and efficiency
costs associated with having specialized FVLA DSPs
that at times sit idle as Worker DSPs operate at full
capacity and fall behind on event processing. It also
increases the efficiency of Worker DSPs that may be
wasting idle time when crossing processing rates are
low. In effect, a fully connected network of FVLAs
is created that will continue to provide effective fault

mitigation when exposed to a high volume of system
failures. The key characteristic of this model is that it
requires no central management or global processing.

3.2. Cooperative Game Theory
Scheduling

As outlined above, this approach uses Worker
level DSPs to accomplish the tasks that the FVLA
is responsible for. However, these are the same DSPs
that are responsible for the critical overall objective
of Level 1 physics application (PA) data filtering [7].
It is therefore extremely important that DSP usage by
each Worker VLA is minimal, and only occurs either
when the PA is not fully utilizing the DSP, or when
emergency fault mitigative action is required.

Aside from the VLA, there are two additional
tasks running on every DSP in RTES at Level 1,
namely the Physics Application (PA), and the DSP
Kernel/Command Processor itself:

Physics Application (PA): A typical physics appli-
cation will read data from the DSP buffer, perform
rudimentary checks on data integrity, process data
with a specialized physics algorithm, and write
results/reports. The checks include timing, event size,
last event time, data integrity, and link failure. After
the data passes the phyics algorithm, the application
program checks for logical errors, and for whether or
not there have been too many hits to the sensor (too
much data).

Kernel/Command Processor:This provides the ba-



sic operating system functionality of the DSP. Kernel
compute cycle consumption should be minimal since
it is viewed as overhead from the application’s point
of view.

As referenced above, game theory has been ap-
plied to a wide range of problems, and is used here
to coordinate the amount of DSP clock cycle that is
allocated between the PA and the VLA. Both the PA
and VLA wish to maximize the number of clock cy-
cles during which they have control. If the VLA takes
too many DSP cycles, then the PA will be unable to
process the incoming data at a high enough rate to
prevent the buffers from overflowing, resulting in a
loss of data continuity. This is often fatal for the ex-
periment since this lost data could very well contain
portions of vital characteristics of the physics prop-
erties being evaluated. If on the other hand, the PA
takes too many DSP cycles, then it runs the risk that
system faults will go undetected, resulting in accep-
tance of corrupt data, and/or incremental bottlenecks
that again cause buffer overflows.

An efficient adaptive scheduling algorithm is re-
quired that will effectively establish scheduling prior-
ities between the PA and VLA. Mandatory costs asso-
ciated with the Kernel/Command Processor, includ-
ing clock cycle costs for context switching must be
factored in. An analysis of the worst-case behavior of
tasks (both VLA and PA) can be done to determine the
amount of time that must be allotted to each process.
However, there must be a way for the system to adap-
tively modify these values when environmental con-
ditions change. That is, if during every interval T, the
HEP applications and the operating system use TPA

and TOS time units, respectively, then the VLA will
be allowed to use T – TPA – TOS every T time units
[10].

An analysis of best-case behavior of tasks (VLA
and PA) requires the use of autility value in order
for each DSP to determine locally precisely when the
PA or VLA should relinquish control [12]. A reward
system based on a combination of the amount of data
processed, along with the frequency of VLA mainte-
nance checks, is used by each DSP in calculating the
following local utility value :

DSP Utility Value = Dw−1 + cF−1 , where

D = Expected amount of data that DSP could process
during a given time interval (T).

w = Current data buffer watermark.
F = Total number of clock cycles elapsed since last

FVLA check on neighboring DSPs.
c = Adaptive constant representing weight to place on

FVLA checks.

Since the amount of data that any single DSP can
process over a given time interval (D) is mostly fixed,

the utility value essentially involves summing the in-
verse of the current data buffer watermark (w−1) with
a weighted value for the inverse of the time elapsed
since FVLA functions were last performed (F−1).

The task currently active (PA or VLA) calculates
the optimum expected utility value for the DSP every
T time units. If a higher utility value for the DSP is
received by remaining active, then the current task
will continue. However, if a higher utility value can
be gained by passing control to the currently inactive
task (PA or VLA), then that is what it will do. For
example, if the PA is currently active, the input data
buffer for a given DSP is low, and FVLA monitoring
responsibilities have not been performed on a par-
ticular DSP in a long time, then the VLA task will
be made active. If however, the VLA was currently
active under these conditions, then the VLA would
simply maintain control for another T time steps,
at which time corresponding utility values would
again be calculated. This is equivalent to determining :

max(w, 2× ((1 / (1 + e−dF )) - .5)

the maximum value of eitherw or 2× ((sigmoid func-
tion value forF) - .5). Here, 2× ((1 / (1 +e−dF )) - .5)
is an adjusted sigmoid function for F which represent
F as a weighted value between 0 and 1. It is important
to note here that the value assigned tod determines the
steepness of the sigmoid function. In other words, the
higher the value ofd, the higher the adjusted sigmoid
value of F. Rememer that a high value for F means that
FVLA tasks are performed more frequently, where as
a low value for F means they are performed less of-
ten. The PA is passed (or maintains) control ifw is
higher than this adjusted sigmoid function value for
F, otherwise the VLA is passed (maintains) control.
For example, if the PA is currently active, the input
data buffer watermark for a given DSP is about half
full (w=.5), and FVLA functions have recently been
performed (the adjusted sigmoid function value forF
is, say, .15) then the PA will remain active.

4. Results
SWARM simulates Farmlet data buffer queues

that are populated at a rate consistent with the be-
havior of the incoming physics crossing data. Each
DSP within a given Farmlet processes a fixed amount
of data at each discrete time step. Errors are intro-
duced randomly within each Worker DSP at a fixed
rate using a Multiply With Carry (RWC8gen) random
number generator with a fixed seed. Any time a soft-
ware or hardware error is encountered within the sim-
ulation, the processing rate for that DSP decreases a
set amount depending on the type of error. The er-
ror is cleared when any DSP within the same Farm-
let performs FVLA checks against the DSP with the
error. However, there is a time cost associated with



performing these checks. As detailed in the section
above describing the self-organizing model, the DSP
must decide whether or not it is worth taking time to
perform FVLA monitoring tasks against neighboring
DSPs. If checks are performed too frequently, then
the time available for data crossing processing is lim-
ited. On the other hand, if they are not performed
frequently enough, then the chances that other DSPs
within the same Farmlet are experiencing errors is
high. As described, a high error rate will also lead to
slow processing rates.

The formula designed for these experiments cal-
culates the frequency of performing FVLA tasks for
neighboring DSPs as a sigmoid function adjusted to a
value between 0.0 and 1.0. This is compared against
the watermark for the crossing data buffer, and the
DSP makes a decision on where to devote its energy,
as described in detail in the last section.

The decision of whether the VLA or PA has con-
trol of the DSP is made by each DSP at each and every
time step in the SWARM simulation. In this way, the
monitoring tasks required by the environment are al-
ways met, but not necessarily by one (or a few) des-
ignated DSPs. Instead, these tasks are performed by
any polymorphicDSP within the Farmlet as dictated
by the changing needs of the environment. The DSPs
themselvesself-organizeas different DSPs within the
Farmlet take on the necessary monitoring tasks at dif-
ferent points in time as required by the environment.

Multiple sets of experiments were run using 12
distinct d-values for the sigmoid function ranging
from .0001 to 3.0. This was repeated for each of 5 dis-
tinct error rates ranging from .00001 to .1. The fixed
error rate represents the probability of an error occur-
ring at any given node during a single time step. For
each unique error rate and d-value, the average num-
ber of crossings processed over a fixed time period (in
this case 10,000 SWARM simulation time steps) was
recorded to measure data throughput.

The results of these experiments are shown as
graphs in Figures 3 and 4 which demonstrate that an
optimum d-value can be found experimentally for any
given error rate (e). For example, Figure 3 shows that
for a fixed error rate of .1, the optimum d-value was
found to be approximately 2.0, at which point 125000
crossings were processed. Figure 4 shows the opti-
mum d-value found for each distinct fixed error rate.
For example, the optimum d-value found is .01 given
a fixed error rate (e) of .0001, is .05 given an error
rate of .001, is .01 given a fixed error rate of .5, and
so on. Clearly, the total amount of data processed by
the system continues to decrease as the frequency of
FVLA tasks being performed continues to drop (the
d-value decreases) below the experimental optimum
d-value threshold. This was expected since this essen-
tially means that software and/or hardware faults are
occurring at a faster rate than they are being mon-

Figure 3. The average number of crossings
processed at various fixed error rates vs. (d) values
representing the steepness of the FVLA threshold
sigmoid function.

Figure 4. The optimum (d) value found experimen-
tally across fixed error rates (e).

itored and corrected by the FVLA, resulting in the
loss of particular software/hardware components that
could have contributed to a higher crossing processing
rate. Similarly, as the frequency of FVLA tasks being
performed increases (the d-value increases) past the
optimum value, the DSP is spending unnecessary ex-
cess time performing FVLA monitoring tasks. Since
this is time that it could have spent instead performing
crossing processing, the data crossing processing rate
drops.

Another finding demonstrated by these results is
that it is far more detrimental to not perform FVLA
monitoring tasks frequently enough, as compared to
performing them too often. Figure 3 shows the com-
paratively minimal cost of exceeding the optimum d-
value, as opposed to the high cost of it being too low.
This confirms initial intuitions that the cost of indi-
vidual errors occurring too frequently far outweighs
the costs associated with performing individual FVLA
monitoring tasks.

The optimum d-values experimentally found for
each fixed error rate are shown in Figure 4. These val-
ues demonstrate another expected trend in the experi-
ments, namely that the optimum frequency of FVLA
monitoring tasks increases as the error rate increases.



In other words, as more faults occur across the system,
more FVLA monitoring and mitigation tasks must be
performed.

One of the most valuable results of these experi-
ments for the RTES collaboration is that it has demon-
strated an experimental method for finding an opti-
mum d-value given a fixed error rate.

5. Next Steps

The results presented in this paper have pro-
vided a way to experimentally determine optimum
systems scheduling thresholds using polymorphic,
lightweight, self-organizing agents within large-scale,
real-time systems. However, error rates, particularly
within these types of real-time systems are typically
not fixed. Therefore, the next step for the RTES col-
laboration is to extend the adaptability of the agents
to handle fluctuations in the error rate across compo-
nents of the system. Variations of reinforcement learn-
ing and other evolutionary techniques are currently
being evaluated for ways that they may be used to au-
tomatically adapt to changing system states. In par-
ticular, alternative reward distribution techniques may
be necessary to best handle the scale, complexity, and
uncertainty inherent in fault mitigation for large-scale
systems such as BTeV.

In addition, another scaled prototype of the actual
projected RTES/BTeV software and hardware envi-
ronment based on the SC2003 demonstration system
is also currently being developed, and will integrate
the VLA self-organizing model.

6. Conclusion

This paper has described a self-organizing, multi-
agent systems approach for systems scheduling based
on cooperative game theory. The design uses distrib-
uted, lightweight agents embedded within individual
DSPs to perform Farmlet level monitoring tasks. The
results show that the method is able to experimentally
determine the optimum rate at which certain tasks
should be performed at each DSP based on specific er-
ror rates. The experiments were run using a SWARM
simulation of2500 DSPs from a data acquisition sys-
tem for a High Energy Physics particle accelerator be-
ing developed at Fermi National Accelerator Labora-
tory. Future work will focus on evolving these rates
dynamically based on fluctuating error rates experi-
enced within the system.
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